

Tetrahedron Letters 44 (2003) 8403-8406

Solid-phase synthesis and utilization of side-chain reactive unnatural amino acids

Martin J. O'Donnell,* Jordi Alsina and William L. Scott*

Department of Chemistry, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA

Received 27 May 2003; revised 10 September 2003; accepted 15 September 2003

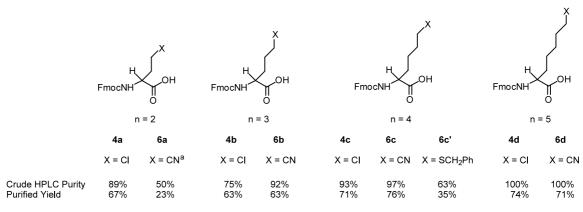
Abstract—Alkylation of the benzophenone imine of glycine Wang resin with α , ω -dihaloalkanes yielded valuable reactive intermediates. These racemic ω -chloro or ω -bromo intermediates were converted to α -amino acids containing diverse side-chain functionalities (e.g. ω -chlorides, nitriles, and thioethers), proline and its ring homologs, and 1-aminocycloalkanecarboxylic acid derivatives.

© 2003 Elsevier Ltd. All rights reserved.

Over the years, non-proteinogenic, unnatural α-amino acids have been widely used as components of peptides to enhance biological activity, proteolytic stability, and bioavailability. 1 Unique conformational constraints can also be induced into peptides or peptidomimetics by introducing an appropriate amino acid precursor. Unnatural amino acids are generally prepared by synthetic routes involving solution-phase techniques, and subsequently incorporated into a peptide sequence by solid-phase methods. We have recently published methods for the preparation of resin-bound α,α -disubstituted unnatural amino acids with diverse side-chain substitutions,² and α -substituted prolines homologs.³ This paper describes the solid-phase preparation of racemic α-monosubstituted amino acids with remote electrophilic centers. This is accomplished by alkylation of the Schiff base of a resin-bound glycinate with α, ω -dihaloalkanes.⁴ The resulting intermediates can then be converted on-resin to unnatural α-amino acids of three different types: (i) amino acids with a variety of side-chain functionalities (4 and 6), (ii) proline and homologs⁵ (8), and (iii) 1-aminocycloalkanecarboxylic acid derivatives⁵ (10) (Scheme 1).

Alkylation of the activated benzophenone imine of glycine Wang resin 1 with α, ω -dihaloalkanes of different chain lengths (n=2-5) provided key resin-bound

racemic intermediates 2. The alkylation of the imine was carried out in NMP under mild reaction conditions using the nonionic Schwesinger base, BTPP⁶ (11, 10 equiv.). In most cases, α-bromo-ω-chloro electrophiles (10 equiv.) were used for the alkylation in order to reduce side reactions such as alkene formation by elimination, premature cyclization on the nitrogen, or crosslinking. Acid-catalyzed hydrolysis of the imines 2 (THF/1 N aqueous HCl, 2:1), was followed by transformation to the resin-bound Fmoc derivatives (Fmoc-Cl, 10 equiv.; DIEA, 20 equiv.; NMP) using an in situ neutralization protocol to minimize competing intramolecular cyclization. Final cleavage (TFA/ Et₃SiH, 95:5) gave the N^{α} -Fmoc protected ω -chloro- α amino acids 4a-d (Scheme 1 and Table 1) with HPLC purities of the crude products from 75% to 100% and purified, isolated yields from 63 to 74%. For compound **4b** (n=3), HPLC purity and isolated yield was lower because of the expected partial competing cyclization to form proline (25% by HPLC).


Following characterization of key intermediates $\mathbf{2}$ as described above, on-resin displacement of the ω -halide by a nucleophile to provide side-chain functionalized products $\mathbf{6}$ was investigated (Scheme 1 and Table 1). An homologous series of ω -nitrile derivatives (length of side chain n=2-5) was prepared by displacement of the halide intermediates $\mathbf{2}$ (Bu₄NCN and Bu₄NI, 10 equiv. each; NMP; 24 h; 25°C). For cases in which n=3 to 5 the intermediate $\mathbf{2}$ was the ω -chloride, while for n=2 the ω -bromide was used, since in this case the ω -chloride derivative was not of sufficient reactivity. Additionally, displacement of the chloride intermediate $\mathbf{2c}$ (n=4) with a less reactive nucleophile, benzyl mercap-

Keywords: alkylation; combinatorial chemistry; α , ω -dihaloalkanes; nucleophilic substitution; proline homologs; Schiff base activation; side-chain diversity; spirocyclic amino acids.

^{*} Corresponding authors. Tel.: +1-317-274-6887; fax: +1-317-274-4701 (M.O.); tel.: +1-317-274-6880; fax: +1-317-274-4701 (W.S.); e-mail: odonnell@chem.iupui.edu; wscott@chem.iupui.edu

Scheme 1. Synthesis of side-chain reactive unnatural amino acids, proline and homologs, and spirocyclic amino acids, from key resin-bound intermediates 2.

Table 1. N^{α} -Fmoc α -amino acids containing ω -chloride, nitrile or thioether functionalities, prepared from key resin-bound intermediates 2

^aThe bromide was used as the halide precursor.

tide (20 equiv.; DIEA, 20 equiv.; NMP; 85°C; 36 h) provided the thioether derivative. Hydrolysis of 5, acylation of the free α-amine with Fmoc-Cl, and TFA cleavage yielded products 6a–d and 6c′ with crude HPLC purities ranging from 50 to 100%, and purified yields from 23 to 76% (Table 1).

Our next goal was to obtain cyclic imino acids (8) of different ring sizes.⁷ Resin-bound five- to seven-membered proline ring homologs were prepared starting

from intermediate 3, by neutralization and intramolecular halide displacement with the α -amino group (Scheme 1). Cyclization conditions varied depending on the ring size. For n=3 (five-membered ring) and n=4 (six-membered ring), cyclization involved using the ω -chloro derivatives (10% DIEA in NMP, 25°C, 24 h). In addition, for n=5 (seven-membered ring), cyclization required using the ω -bromo derivative and higher temperature (85°C); for n=2 (four-membered ring), all experiments led to formation of the N-alkyl cross-link-

ing product by intermolecular halide displacement by the α -amino group. Acylation of the cyclic secondary amine with Fmoc-Cl, followed by TFA cleavage gave products **8a** and **8c–8d** with excellent crude HPLC purities (88–98%) and good purified yields (55–73%) (Table 2). Following identical procedures, N^{α} -Fmoc-4-methylproline **8b** (mixture of four stereoisomers) and N^{α} -Fmoc-1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid **8e** were prepared in good purities and yields (Table 2) by using, respectively, (±)-1-bromo-3-chloro-2-methylpropane and α,α' -dichloro- α -xylene as the alkylating agents, and 10% DIEA in NMP for 24 h at 25°C for the cyclization.

1-Aminocycloalkanecarboxylic acid spiro derivatives 10 can also be synthesized starting from intermediate 2, by an intramolecular C^{α} -alkylation (Scheme 1).⁸ These conformationally constrained α-amino acid derivatives were prepared from the ω-chloro derivatives (BTPP, 10 equiv., NMP, 85°C, 24 h). Hydrolysis of 9, followed by acylation with Fmoc-Cl, and TFA cleavage provided N^{α} -Fmoc protected 1-aminocyclopropane-1-carboxylic acid (n=2, 10a), and homologs (n=4, 10b, and 2-aminoindan-2-carboxylic acid, 10c°) with crude HPLC purities ranging from 72 to 100%, and purified yields from 29 to 65% (Table 2).

In summary, alkylation of the benzophenone imine of glycine Wang resin with $\alpha,\omega\text{-dihaloalkanes}$ gives access to key $\omega\text{-halo}$ intermediates. These intermediates were transformed on-resin to $\alpha\text{-monosubstituted}$ amino acids containing diverse side-chain functionalities, proline and its ring homologs, and 1-aminocycloalkanecarboxylic acid derivatives. In addition, the incorporation of the $\omega\text{-haloalkanes}$ 3 and 4 into peptides could provide potential alkylating agents for applications such as affinity labeling 10 and intramolecular cyclization. 11

Experimental

Preparation of the benzophenone imine of Gly-Wangresin (1). In a 5 mL syringe, ¹² Fmoc-Gly-Wang-resin (0.2 g, 1.0 mmol/g) was washed with CH_2Cl_2 and DMF (2×1 min each), and then treated with piperidine–DMF (1:4, 3×5 min), followed by washings with DMF (6×0.5 min). Benzophenone imine (336 μ L, 10 equiv.) in NMP (2 mL) was added to the resin, followed by the addition of glacial acetic acid (100 μ L, 8.7 equiv.), and the reaction was allowed to proceed for 24 h with rotation. The resultant resin was washed with NMP and THF (4×0.5 min each).

Alkylation of resin 1 with an α,ω -dihaloalkane. Resinbound Schiff base 1 (200 µmol) was washed with NMP (2×0.5 min). The α,ω -dihaloalkane (10 equiv.) in NMP (2 mL) and BTPP (610 µL, 10 equiv.) were added, and the suspension was rotated for 24 h at 25°C. The resin was washed with NMP and CH₂Cl₂ (4×0.5 min each).

Nucleophilic displacement of the halide. The resin bound imine 2 (200 μ mol) was swollen with NMP (2×0.5 min). Bu₄NI (925 mg, 10 equiv.) and Bu₄NCN (670 mg, 10 equiv.) were individually dissolved in NMP (1.5 mL each), combined, and added to the resin. The reaction mixture was rotated for 24 h at 25°C. The resulting resin 5 was washed with NMP and CH₂Cl₂ (6×0.5 min each).

Hydrolysis of the imine. Resin-bound imine 2 or 5 (200 μ mol) was washed with THF (6×0.5 min). THF-1N HCl aqueous (2:1, 4 mL) was added, and the suspension was rotated for 4 h at 25°C. The resin was washed with THF and CH₂Cl₂ (4×0.5 min each).

Acylation of resin-bound product with Fmoc-Cl. Resin-bound amine 3 (200 µmol) was washed with NMP

Table 2. Products from conversion of intermediates 2 to N^{α} -protected Fmoc proline, its ring homologs, and 1-aminocyclo-alkanecarboxylic acid derivatives

Fm	noc-N-COOH	Fmoc-N-COOH	Fmoc-N H COOH	Fmoc-N H COOH	Fmoc-N H COOH
	n = 3		n = 4	n = 5	
	8a	8b	8c	8d ^a	8e
Crude HPLC Purity Purified Yield	98% 68%	98% 77%	94% 73%	88% 55%	95% 72%
^a The bromide was used as the halide precursor.			\bigcirc		
FmocNH COOH			FmocNH COOH		FmocNH COOH
	n = 2		n = 4		
	10a		10b		10c
Crude HPLC Purity Purified Yield	100% 65%		73% 58%		72% 29%

 $(4\times0.5 \text{ min})$. Fmoc-Cl (516 mg, 10 equiv.) was dissolved in NMP (2 mL), added to the resin, and acylation was started by addition of DIEA (680 μ L, 20 equiv.). Reaction mixture was rotated for 24 h at 25°C. The resin was washed with NMP, THF, and CH₂Cl₂ (4×0.5 min each).

Cleavage and purification. The resin was cleaved with TFA-Et₃SiH (95:5, 1×2 h, 1×30 min). Filtrates were collected, combined with TFA-CH₂Cl₂ washes (1:3, 2×2 min) of the resin, and evaporated. Crude products were purified over silica gel with CHCl₃-THF-HOAc (92:8:1).

6-Chloro-2-[](9*H***-fluoren-9-ylmethoxy)carbonyl] amino]-hexanoic acid (4c).** Using 1-bromo-4-chlorobutane (230 μL, 10 equiv.) in the alkylation step. 1 H NMR (CD₃OD) δ 1.48–1.66 (m, 2H), 1.66–2.00 (m, 4H), 3.61 (t, J=6.6 Hz, 2H), 4.14–4.24 (m, 1H), 4.27 (t, J=6.6 Hz, 1H), 4.40 (d, J=6.6 Hz, 2H), 7.30–7.48 (m, 4H), 7.64–7.76 (m, 2H), 7.84 (d, J=7.2 Hz, 2H); 13 C NMR (CD₃OD) δ 24.3, 32.0, 33.2, 45.4, 48.6, 55.2, 67.9, 120.9, 126.2, 128.1, 128.7, 142.6, 145.2, 145.4, 158.7, 175.9.

6-Cyano-2-||(9*H***-fluoren-9-ylmethoxy)carbonyl|amino|hexanoic acid (6c)**. Using 1-bromo-4-chlorobutane (230 μL, 10 equiv.) in the alkylation step. ¹H NMR (CD₃OD) δ 1.50–1.65 (m, 2H), 1.65–1.85 (m, 3H), 1.85–2.00 (m, 1H), 2.49 (t, J=6.9 Hz, 2H), 4.15–4.25 (m, 1H), 4.27 (t, J=7.5 Hz, 1H), 4.41 (d, J=7.5 Hz, 2H), 7.30–7.52 (m, 4H), 7.62–7.78 (m, 2H), 7.84 (d, J=7.5 Hz, 2H); ¹³C NMR (CD₃OD) δ 17.2, 26.0, 26.1, 31.9, 48.8, 55.1, 67.9, 120.9, 121.0, 126.3, 128.2, 128.8, 142.6, 145.2, 145.3, 158.7, 175.7.

Alternative synthetic procedure for proline derivatives

Intramolecular cyclization of the resin-bound alkylated products. The resin-bound amine 3 (200 μ mol) was washed with NMP (4×0.5 min). 10% DIEA in NMP (4 mL) was added to the resin and the reaction mixture was rotated for 24 h at 25°C. The resin was washed with NMP and CH₂Cl₂ (4×0.5 min each).

1-(9*H***-Fluoren-9-ylmethyl) hydrogen 1,2-piperidine dicarboxylate (8c)**. Using 1-bromo-4-chlorobutane (230 μL, 10 equiv.) in the alkylation step. ¹H NMR (CD₃OD, 3:2 mixture of two rotamers) δ 1.24–1.54 (m, 2H), 1.54–1.82 (m, 3H), 2.16–2.36 (m, 1H), 2.94–3.20 (m, 1H), 3.88–4.10 (m, 1H), 4.22–4.36 (m, 1H), 4.36–4.52 (m, 2H), 4.68 (d, J=5.1 Hz, 0.4 H), 4.83 (d, J=5.1 Hz, 0.6 H), 7.28–7.50 (m, 4H), 7.56–7.72 (m, 2H), 7.84 (m, 2H); ¹³C NMR (CD₃OD, mixture of two rotamers) δ 21.7, 25.7, 25.8, 27.8, 42.8. 43.0, 48.6, 55.6, 55.8, 68.8, 120.9, 126.1, 128.2, 128.8, 142.6, 145.2, 145.2, 145.3, 145.4, 157.8, 158.1, 174.6.

Alternative synthetic procedure for spiro derivatives

Intramolecular cyclization by C^{α} -alkylation of the resinbound alkylated products. Resin 2 (200 µmol) was washed with NMP (2×0.5 min). Spiro formation was carried out in a glass vessel by adding BTPP (612 µL, 10 equiv.) in NMP (2 mL) to the resin. Reaction mixture was heated at 85°C for 24 h with occasional stirring. Resin was washed with NMP and CH₂Cl₂ (4×0.5 min each).

1-[[(9*H*-Fluoren-9-ylmethoxy)carbonyl]amino]cyclo propanecarboxylic acid (10a). Using 1-bromo-2-chloroethane (166 μL, 10 equiv.) in the alkylation step. 1 H NMR (CD₃OD+CDCl₃, 3:1 mixture of two rotamers) δ 0.94–1.04 (m, 0.5H), 1.08–1.22 (m, 1.5H), 1.34–1.44 (m, 0.5H), 1.44–1.58 (m, 1.5H), 4.26 (t, J=6.9 Hz, 1H), 4.37 (d, J=6.6 Hz, 1.5H), 4.46 (d, J=6.0 Hz, 0.5H), 7.26–7.48 (m, 4H), 7.69 (d, J=7.5 Hz, 2H), 7.81 (d, J=7.5 Hz, 2H); 13 C NMR (CD₃OD+CDCl₃, mixture of two rotamers) δ 17.9, 34.8, 48.3, 67.8, 120.8, 126.1, 128.0, 128.6, 142.4, 145.1, 159.1, 176.7.

Acknowledgements

We gratefully acknowledge the financial support of Lilly Research Laboratories and NIH (GM 28193).

References

- For lead references, see: Asymmetric Synthesis of Novel Sterically Constrained Amino Acids; Symposium-in-Print, Hruby, V. J.; Soloshonok, V. A., Eds. Tetrahedron 2001, 57, 6329–6650.
- Scott, W. L.; O'Donnell, M. J.; Delgado, F.; Alsina, J. J. Org. Chem. 2002, 67, 2960–2969.
- Scott, W. L.; Alsina, J.; O'Donnell, M. J. J. Comb. Chem. 2003, 5, 684–692.
- 4. For selected reports of solution-phase synthesis and use of ω -halo- α -amino acid derivatives, see footnote 11 in Ref. 2.
- For recent reviews concerning the solution-phase synthesis of cyclic amino acid derivatives, see: (a) Cativiela, C.;
 Díaz-de-Villegas, M. D. Tetrahedron: Asymmetry 2000, 11, 645–732. (b) Park, K.-H.; Kurth, M. J. Tetrahedron 2002, 58, 8629–8659.
- For examples of applications of organic-soluble, nonionic phosphazine bases BEMP and BTPP from earlier studies, see Refs. 2 and 3.
- 7. For reports on the solid-phase synthesis of proline derivatives, see footnote 4 in Ref. 3.
- 8. For the solution-phase synthesis of similar derivatives using this methodology, see: O'Donnell, M. J.; Bruder, W. A.; Eckrich, T. M.; Shullenberger, D. F.; Staten, G. S. *Synthesis* **1984**, 127–128.
- 9. For the solid-phase preparation of analogs of **10c** under similar conditions, see: Bhandari, A.; Jones, D. G.; Schullek, J. R.; Vo, K.; Schunk, C. A.; Tamanaha, L. L.; Chen, D.; Yuan, Z.; Needels, M. C.; Gallop, M. A. *Bioorg. Med. Chem. Lett.* **1998**, *8*, 2303–2308.
- Colman, R. F. In *Protein Function*, 2nd Ed.; Creighton, T. E., Ed.; IRL Press: Oxford, UK, 1997; pp. 155–183.
- (a) McNamara, L. M. A.; Andrews, M. J. I.; Mitzel, F.; Siligardi, G.; Tabor, A. B. *J. Org. Chem.* **2001**, *66*, 4585–4594; (b) Blackwell, H. E.; Sadowsky, J. D.; Howard, R. J.; Sampson, J. N.; Chao, J. A.; Steinmetz, W. E.; O'Leary, D. J.; Grubbs, R. H. *J. Org. Chem.* **2001**, *66*, 5291–5302.
- Equipment and general procedures for parallel manual solid-phase organic synthesis are described in Refs. 2 and 3.